Chapter 1 Groundwater – California's Hidden Resource # Chapter 1 Groundwater - California's Hidden Resource In 1975, California's Ground Water – Bulletin 118 described groundwater as "California's hidden resource." Today, those words ring as true as ever. Because groundwater cannot be directly observed, except under a relatively few conditions such as at a spring or a wellhead, most Californians do not give much thought to the value that California's vast groundwater supply has added to the State. It is unlikely that California could have achieved its present status as the largest food and agricultural economy in the nation and fifth largest overall economy in the world without groundwater resources. Consider that about 43 percent of all Californians obtain drinking water from groundwater. California is not only the single largest user of groundwater in the nation, but the estimated 14.5 million acre-feet (maf) of groundwater extracted in California in 1995 represents nearly 20 percent of all groundwater extracted in the entire United States (Solley and others 1998). # California's Hydrology California's climate is dominated by the Pacific storm track. Numerous mountain ranges cause orographic lifting of clouds, producing precipitation mostly on the western slopes and leaving a rain shadow on most eastern slopes (Figure 1 and Figure 2). These storms also leave tremendous accumulations of snow in the Sierra Nevada during the winter months. While the average annual precipitation in California is about 23 inches (DWR 1998), the range of annual rainfall varies greatly from more than 140 inches in the northwestern part of the State to less than 4 inches in the southeastern part of the State. Snowmelt and rain falling in the mountains flow into creeks, streams, and rivers. The average annual runoff in California is approximately 71 maf (DWR 1998). As these flows make their way into the valleys, much of the water percolates into the ground. The vast majority of California's groundwater that is accessible in significant amounts is stored in alluvial groundwater basins. These alluvial basins, which are the subject of this report, cover nearly 40 percent of the geographic area of the State (Figure 3). This bulletin focuses on groundwater resources, but in reality groundwater and surface water are inextricably linked in the hydrologic cycle. As an example, groundwater may be recharged by spring runoff in streams, but later in the year the base flow of a stream may be provided by groundwater. So, although the land surface is a convenient division for categorizing water resources, it is a somewhat arbitrary one. It is essential that water managers recognize and account for the relationship between groundwater and surface water in their planning and operations. Figure 1 Shaded relief map of California Figure 2 Mean annual precipitation in California, 1961 to 1990 Figure 3 Groundwater basins, subbasins and hydrologic regions # California's Water Supply System The economic success achieved in California could not have been foreseen a century ago. California's natural hydrologic system appeared too limited to support significant growth in population, industry, and agriculture. The limitations revolved around not only the relative aridity of the State, but the geographic, seasonal, and climatic variability that influence California's water supply. Approximately 70 percent of the State's average annual runoff occurs north of Sacramento, while about 75 percent of the State's urban and agricultural water needs are to the south. Most of the State's precipitation falls between October and April with half of it occurring December through February in average years. Yet, the peak demand for this water occurs in the summer months. Climatic variability includes dramatic deviations from average supply conditions by way of either droughts or flooding. In the 20th century alone, California experienced multiyear droughts in 1912–1913, 1918–1920, 1922–1924, 1929–1934, 1947–1950, 1959–1961, 1976–1977, and 1987-1992 (DWR 1998). California has dealt with the limitations resulting from its natural hydrology and achieved its improbable growth by developing an intricate system of reservoirs, canals, and pipelines under federal, State and local projects (Figure 4). However, a significant portion of California's water supply needs is also met by groundwater. Typically, groundwater supplies about 30 percent of California's urban and agricultural uses. In dry years, groundwater use increases to about 40 percent statewide and 60% or more in some regions. The importance of groundwater to the State's development may have been underestimated at the beginning of the 20th century. At that time, groundwater was seen largely as just a convenient resource that allowed for settlement in nearly any part of the State, given groundwater's widespread occurrence. Significant artesian flow from confined aquifers in the Central Valley allowed the early development of agriculture. When the Water Commission Act defined the allocation of surface water rights in 1914, it did not address allocation of the groundwater resource. In the 1920s, the development of the deep-well turbine pump and the increased availability of electricity led to a tremendous expansion of agriculture, which used these high-volume pumps and increased forever the significance of groundwater as a component of water supply in California. Figure 4 Water projects in California #### Box B Will Climate Change Affect California's Groundwater? California's water storage and delivery system can be thought of as including three reservoir systems the snowpack of the Sierra Nevada, an extensive system of dams, lakes, and conveyance systems for surface water, and finally the aquifers that store groundwater. Precipitation in the form of snow is stored in the Sierra in winter and early spring and under ideal conditions melts in a manner that allows dams to capture the water for use during California's dry season. When snow melts faster, the dams act as flood control structures to prevent high runoff from flooding lowland areas. Water storage and delivery infrastructure—dams and canals—has been designed largely around the historical snowpack, while aguifers have played a less formal and less recognized role. What will be the effect of climate change on California's water storage system? How will groundwater basins and aquifers be affected? The latest report of the Intergovernmental Panel on Climate Change (2001) reaffirms that climate is changing in ways that cannot be accounted for by natural variability and that "global warming" is occurring. Studies by the National Water Assessment Team for the U.S. Global Change Research Program's National Assessment of the Potential Consequences of Climate Variability and Change identify potential changes that could affect water resources systems. For California, these include higher snow levels leading to more precipitation in the form of rain, earlier runoff, a rise in sea level, and possibly larger floods. In addition to affecting the balance between storage and flood control of our reservoirs, such changes in hydrology would affect wildlands, resulting in faunal and floral displacement and resulting in changes in vegetative water consumption. These changes would also affect patterns of both irrigated and dryland farming. A warmer, wetter winter would increase the amount of runoff available for groundwater recharge; however, this additional runoff in the winter would be occurring at a time when some basins, particularly in Northern California, are either being recharged at their maximum capacity or are already full. Conversely, reductions in spring runoff and higher evapotranspiration because of warmer temperatures could reduce the amount of water available for recharge and surface storage. The extent to which climate will change and the impact of that change are both unknown. A reduced snowpack, coupled with increased seasonal rainfall and earlier snowmelt may require a change in the operating procedures for existing dams and conveyance facilities. Furthermore, these changes may require more active development of successful conjunctive management programs in which the aquifers are more effectively used as storage facilities. Water managers might want to evaluate their systems to better understand the existing snowpack-surface water-groundwater relationship, and identify opportunities that may exist to optimize groundwater and other storage capability under a new hydrologic regime that may result from climate change. If more water was stored in aquifers or in new or reoperated surface storage, the additional water could be used to meet water demands when the surface water supply was not adequate because of reduced snowmelt. # **Recent Groundwater Development Trends** While development of California's surface water storage system has slowed significantly, groundwater development continues at a strong pace. A review of well completion reports submitted to the California Department of Water Resources (DWR) provides data on the number and type of water wells drilled in California since 1987. For the 14-year period, DWR received 127,616 well completion reports for water supply wells that were newly constructed, reconditioned, or deepened—an average of 9,115 annually¹. Of these, 82 percent were drilled for individual domestic uses; 14 percent for irrigation; and about 4 percent for a combined group of municipal and industrial uses (Figure 5). Although domestic wells predominate, individual domestic use makes up a small proportion of total groundwater use in the State. Figure 5 Well completion reports filed with DWR from 1987 through 2000 The most evident influence on the number of wells constructed is hydrologic conditions. The number of wells constructed and modified increases dramatically with drought conditions (Figure 6). The number of wells constructed and modified annually from 1987 through 1992 is more than double the annual totals for 1995 through 2000. Each year from 1987 through 1992 was classified as either dry or critically dry; water years 1995 through 2000 were either above normal or wet, based on measured unimpaired runoff in the Sacramento and San Joaquin valleys. In addition to providing an indication of the growth of groundwater development, well completion reports are a valuable source of information on groundwater basin conditions. ¹ DWR also received an average of 4,225 well completion reports for monitoring, which were not included above because they do not extract groundwater for supply purposes. Figure 6 Well completion reports filed annually from 1987 through 2000 # The Need for Groundwater Monitoring and Evaluation Some 34 million people called California their home in the year 2000, and a population of nearly 46 million is expected by 2020. The increased population and associated commercial, industrial, and institutional growth will bring a substantially greater need for water. This need will be met in part by improved water use efficiency, opportunities to reoperate or expand California's surface water system, and increased desalination and recycling of water sources not currently considered usable. This need will also be met by storing and extracting additional groundwater. However, the sustainability of the groundwater resource, both in terms of what is currently used and future increased demand, cannot be achieved without effective groundwater management. In turn, effective groundwater management cannot be achieved without a program of groundwater data collection and evaluation. Perhaps surprising to many, California does not have a comprehensive monitoring network for evaluating the health of its groundwater resource, including quantity and quality of groundwater. The reasons for this are many with the greatest one being that information on groundwater levels and groundwater quality is primarily obtained by drilling underground, which is relatively expensive. Given that delineated groundwater basins cover about 40 percent of the State's vast area, the cost of a dedicated monitoring network would be prohibitive. The other important reason for the lack of a comprehensive network is that, as will be discussed later in this report, groundwater is a locally controlled resource. State and federal agencies become involved only when a groundwater issue is directly related to the mission of a particular agency or if a local agency requests assistance. For these and other reasons, California lacks a cohesive, dedicated monitoring network. #### Box C What about Overdraft? Overdraft is the condition of a groundwater basin in which the amount of water withdrawn by pumping over the long term exceeds the amount of water that recharges the basin. Overdraft is characterized by groundwater levels that decline over a period of years and never fully recover, even in wet years. Overdraft can lead to increased extraction costs, land subsidence, water quality degradation, and environmental impacts. The California Water Plan Update, Bulletin 160-98 (DWR 1998) estimated that groundwater overdraft in California in 1995 was nearly 1.5 million acre-feet annually, with most of the overdraft occurring in the Tulare Lake, San Joaquin River, and Central Coast hydrologic regions. The regional and statewide estimates of overdraft are currently being revised for the 2003 update of Bulletin 160. While these estimates are useful from a regional and statewide planning perspective, the basin water budgets calculated for this update of Bulletin 118 clearly indicate that information is insufficient in many basins to quantify overdraft that has occurred, project future impacts on groundwater in storage, and effectively manage groundwater. Further technical discussion of overdraft is provided in Chapter 6 of this bulletin. When DWR and other agencies involved in groundwater began to collect data in the first half of the 20th century, it quickly became evident that there were insufficient funds to install an adequate number of monitoring wells to accurately determine changes in the condition of groundwater basins. Consequently, to create a serviceable monitoring network, the agencies asked owners of irrigation or domestic wells for permission to measure water levels and to a lesser extent to monitor water quality. These have been called "wells of opportunity." In many areas, this approach has led to a network of wells that provide adequate information to gain a general understanding of conditions in the subsurface and to track changes through time. In some areas, groundwater studies were conducted and often included the construction of a monitoring well network. These studies have gradually contributed to a more detailed understanding of some of California's groundwater basins, particularly the most heavily developed basins. Given the combination of monitoring wells of opportunity and dedicated monitoring wells, it might be assumed that an adequate monitoring network in California will eventually accumulate. However, several factors contribute to reducing the effectiveness of the monitoring network for data collection and evaluation: (1) The funding for data programs in many agencies, which was generally insufficient in the first place, has been reduced significantly. (2) When private properties change ownership, some new owners rescind permission for agency personnel to enter the property and measure the well. (3) The appropriateness of using these private wells is questionable because they are often screened over long intervals encompassing multiple aguifers in the subsurface, and in some cases construction details for the well are unknown. (4) Some wells with long-term records actually reach the end of their usefulness because the casing collapses or something falls into the well, making it unusable. In some cases, groundwater levels may drop below the well depth. (5) As water quality or water quantity conditions change, the monitoring networks may no longer be adequate to provide necessary data to manage groundwater. The importance of long-term monitoring networks cannot be overstated. Sound groundwater management decisions require observation of trends in groundwater levels and groundwater quality. Only through these long-term evaluations can the question of sustainability of groundwater be answered. For example, this report contains a summary of groundwater contamination in public water supply wells throughout the State collected from 1994 through 2000. While this provides a "snapshot" of the suitability of the groundwater currently developed for public supply needs, it does not address sustainability of groundwater for public uses. Sustainability can only be determined by observing groundwater quality over time. If conditions worsen, local managers will need to take steps to prevent further harm to groundwater quality. Long-term groundwater records require adequate funding and staff to develop groundwater monitoring networks and to collect, summarize, and evaluate the data.